Reducing manufacturing lead times and minimizing work-in-process (WIP) inventories are the cornerstones of popular manufacturing strategies such as Lean, Quick Response, and Just-in-Time Manufacturing. In this paper, we present a model that captures the relationship between facility layout and congestion-related measures of performance. We use the model to introduce a formulation of the facility layout design problem where the objective is to minimize work-in-process (WIP). In contrast to some recent research, we show that layouts obtained using a WIP-based formulation can be very different from those obtained using the conventional quadratic assignment problem (QAP) formulation. For example, we show that a QAP-optimal layout can be WIP-infeasible. Similarly, we show that two QAP-optimal layouts can have vastly different WIP values. In general, we show that WIP is not monotonic in material-handling travel distances. This leads to a number of surprising results. For instance, we show that it is possible to reduce overall distances between departments but increase WIP. Furthermore, we find that the relative desirability of a layout can be affected by changes in material-handling capacity even when travel distances remain the same. We examine the effect of various system parameters on the difference in WIP between QAP- and WIP-optimal layouts. We find that although there are conditions under which the difference in WIP is significant, there are those under which both layouts are WIP-equivalent.

(1) Facility Layout; Queueing Networks; Quadratic Assignment Problem; Material Handling; Performance Evaluation)
is itself a function of system capacity and variability, we introduce a model that captures the relationship between layout and congestion. We use the model to examine the effect of layout on capacity and variability and derive insights that can be used to generate what might be termed as agile or quick response layouts.

In our analysis, we focus on WIP as our primary measure of congestion. However, by virtue of Little’s law, this could also be related to both lead time and throughput. In our analysis, we assume that capacity decisions have already been made. Therefore, our objective is to determine a layout that minimizes WIP given fixed material-handling capacity. Our model can, however, be used to solve problems where both material-handling capacity and layout are decision variables, so that the objective is to minimize both investment and congestion costs. Alternatively, the model can be used to formulate problems where the objective is to minimize one type of cost subject to a constraint on the other.

Our work is in part motivated by two recent papers by Fu and Kaku (1997a, 1997b) in which they present a plant layout problem formulation for job-shop-like manufacturing systems where the objective is to minimize average work-in-process. In particular, they investigate conditions under which the familiar quadratic assignment problem (QAP) formulation, where the objective is to minimize average material-handling costs, also minimizes average work-in-process. By modeling the plant as an open queueing network, they show that under a set of assumptions the problem reduces to the quadratic assignment problem. Using a simulation of an example system, they found that the result apparently holds under much more general conditions than are assumed in the analytical model.

In this paper, we show that when some of the assumptions used by Fu and Kaku are relaxed, their key observation regarding the equivalence of the two formulations is not always valid. In fact, under general conditions, we show that layouts generated using the queueing-based model can be very different from those obtained using the conventional QAP formulation. More importantly, we show that the choice of layout does have a direct impact on WIP accumulation at both the material-handling system and at the individual departments, and that the behavior of expected WIP is not necessarily monotonic in the average distance traveled by the material-handling device. This leads to a number of surprising and counterintuitive results. In particular, we show that reducing overall distances between departments can increase WIP. We also show that the desirability of a layout can be affected by non-material-handling factors, such as department, utilization levels, variability in processing times at departments, and variability in product demands. In general, we find the objective function used in the QAP formulation to be a poor indicator of WIP. For example, we show that a QAP-optimal layout can be WIP-infeasible—i.e., it results in infinite WIP. Similarly, we show that two QAP-optimal layouts can have vastly different
WIP values. Furthermore, we find that the QAP formulation, by accounting only for full travel by the material-handling system, ignores the important role that empty travel plays. For example, we find that minimizing full travel, as the QAP formulation does, can cause empty travel to increase, which in turn can increase WIP. This leads to some additional counterintuitive results. For instance, we find that it can be highly desirable to place departments in neighboring locations even though there is no direct material flow between them. Likewise, we show that it can be beneficial to place departments with high intermaterial flows in distant locations from each other. On the other hand, we also show that there are conditions on flow distribution, layout geometry, and material-handling capacity under which both a QAP-optimal and a WIP-optimal layout are WIP-equivalent.

In our model, we relax several of the assumptions used by Fu and Kaku (1997a, 1997b). In particular, we let part interarrival times and processing times be generally distributed and determined by the number of product types and their routings. We also allow the distances traveled by the material-handling devices to be determined by the layout configuration. This allows us to characterize exactly the distribution of travel times and to capture both empty and full travel by the material-handling system. We show that relaxing these assumptions enables us to capture important interactions between the layout configuration, the distribution of travel times, and several operating characteristics of the processing departments. These interactions are absent in the Fu and Kaku (1997b) model, which in part explains the results we obtain. Our results are applicable to systems where a shared material-handling system consisting of discrete devices is used. This excludes systems with continuous conveyors and systems with dedicated material handling for each segment of the flow.

Although there is an extensive literature on design of facility layouts (see Meller and Gau 1996 for a recent review), the design criterion in the majority of this literature is material-handling cost, measured either directly as a function of material-handling distances or indirectly through an adjacency score (Tompkins 1996). Few papers consider operational performance measures, such as WIP, throughput, or cycle time, as design criteria or design constraints. Among those that do, we note the previously mentioned papers by Fu and Kaku (1997a, 1997b) and papers by Kouvelis and Kiran (1990, 1991). Kouvelis and Kiran introduce a modified formulation of the quadratic assignment problem where the objective is to minimize the sum of material handling and WIP-holding costs subject to a constraint on throughput. In modeling travel times, however, they ignore empty travel and consider only the mean of the full travel-time distribution. A similar approach is also used by Solberg and Nof (1980) in evaluating different layout configurations. Outside the layout literature, there is a related body of research on design of material-handling systems. Although some of this literature addresses the modeling of empty travel, especially as it pertains to the design of automated guided vehicles (AGV), it generally assumes a fixed layout (see, for example, Egebelu (1987) for a discussion of empty travel in AGV design under varying assumptions). A recent review of this literature can be found in Johnson and Brandeau (1996).

2. Model Formulation

We use the following assumptions and notation.

(i) The plant produces N products. Product demands are independently distributed random variables. Unit orders arrive according to a renewal process with rate D_i (average demand per unit time) and a squared coefficient of variation C_{i}^2 for $i = 1, 2, \ldots, N$. The squared coefficient of variation denotes the ratio of the variance over the squared mean of unit order interarrival times.

(ii) Material handling is carried out by a set of discrete material-handling devices, or transporters. For ease of discussion, we first present the model for the single-transporter case. Extension to systems with multidevices is discussed in §3. In responding to a request, a material-handling device travels empty from the department location of its last delivery to the department location of the current request. Material transfer requests are serviced on a first-come-first-served (FCFS) basis. In the absence of any requests, the material-handling device remains at the location of its last delivery.
(iii) The travel time between any pair of locations k and l, t_{kl}, is assumed to be deterministic and is given by $t_{kl} = d_{kl}/v$, where d_{kl} is the distance between locations k and l and v is the speed of the material-handling transporter.

(iv) Products are released to the plant from a loading department and exit the plant through an unloading (or shipping) department. Departments are indexed from $i = 0$ to $M+1$, with the indices $i=0$ and $M+1$ denoting, respectively, the loading and unloading departments.

(v) The plant consists of M processing departments, with each department consisting of a single server (e.g., a machine) with ample storage for work-in-process. Jobs in the queue are processed in first-come-first-served order. The amount of material flow, λ_{ij}, between a pair of departments i and j is determined from the product routing sequence and the total amount of material delivered to the departments, which is in turn determined by the operating characteristics of the material-handling system, and the layout configuration, and that this interaction has a direct effect on WIP accumulation.

We model the plant as an open network of GI/G/1 queues, with the material-handling system being a central server queue. Note that because parts are delivered to the departments by the material-handling system, the operating characteristics of the material-handling system, such as utilization and travel-time distribution, directly affect the interarrival time distribution of parts to the departments. Similarly, since the queue for the material-handling system consists of the department output buffers, the interarrival time distribution to this queue is determined by the departure process from the departments, which is in turn determined by the operating characteristics of the departments. Therefore, there is a close coupling between the inputs and outputs of the processing departments and the material-handling system. In our model, we explicitly capture this coupling and show that there exists a three-way interaction between the department operating characteristics, the operating characteristics of the material-handling system, and the layout configuration, and that this interaction has a direct effect on WIP accumulation.

In order to show this effect, let us first characterize the travel-time distribution. In responding to a material-transfer request, the material-handling device performs an empty trip from its current location (the location of its last delivery), at some department r, followed by a full trip from the origin of the current request, say department i, to the destination of the transfer request at a specified department j (see Figure 1). The probability distribution p_{rij} of an empty trip from r to i followed by a full trip from i to j is, therefore, given by:

$$p_{rij} = \sum_{k=0}^{M} p_{kr} p_{ij},$$ \hspace{1cm} (4)

where p_{ij} is the probability of a full trip from department i to department j, which can be obtained as

$$p_{ij} = \frac{\lambda_{ij}}{\sum_{i=0}^{M} \sum_{j=1}^{M+1} \lambda_{ij}}.$$ \hspace{1cm} (5)

We show in §3 that Expressions (4) and (5) are also valid for systems with multiple transporters. Given a layout configuration \mathbf{x}, the time to perform an empty trip from department r to department i followed by
Figure 1 Empty and Full Travel in a System with Discrete Material Handling Devices

![Diagram of a system with material handling devices](attachment://system_diagram.png)

A full trip to department j is given by $t_{ij}(x) = t_{ri}(x) + t_{ij}(x)$, where

$$t_{ij}(x) = \sum_{k=0}^{K} \sum_{l=0}^{L} x_{ik} x_{jl} d_{kl} / v$$

(6)

and is the travel time from department i to department j. From (4)–(6), we can obtain the mean and variance of travel time as follows:

$$E(S_i) = \sum_{r=1}^{M+1} \sum_{i=0}^{M} \sum_{j=0}^{M+1} p_{rij} t_{ij}(x)$$

$$= \sum_{r=1}^{M+1} \sum_{i=0}^{M} \sum_{j=0}^{M+1} \sum_{k=0}^{K} \sum_{l=0}^{L} (\lambda_{kr} \lambda_{lj} / \lambda_i^2) t_{ij}(x),$$

(7)

and

$$\text{Var}(S_i) = E(S_i^2) - E(S_i)^2,$$

(8)

where

$$E(S_i^2) = \sum_{r=1}^{M+1} \sum_{i=0}^{M} \sum_{j=0}^{M+1} p_{rij} (t_{ij}(x))^2$$

$$= \sum_{r=1}^{M+1} \sum_{i=0}^{M} \sum_{j=0}^{M+1} \sum_{k=0}^{K} \sum_{l=0}^{L} (\lambda_{kr} \lambda_{lj} / \lambda_i^2) (t_{ij}(x))^2,$$

(9)

We can also obtain the average utilization of the material-handling system, ρ_i, as:

$$\rho_i = \lambda_i E(S_i) = \sum_{r=1}^{M+1} \sum_{i=0}^{M} \sum_{j=0}^{M+1} (\lambda_{kr} \lambda_{lj} / \lambda_i) (t_{ij}(x) + t_{ij}(x)),$$

(11)

which can be simplified as:

$$\rho_i = \sum_{r=1}^{M+1} \sum_{i=0}^{M} (\lambda_{ri} / \lambda_i) t_{ri}(x) + \sum_{i=0}^{M+1} \lambda_{ij} t_{ij}(x)$$

(12)

or equivalently,

$$\rho_i = \rho_i^f + \rho_i^e,$$

(13)

where

$$\rho_i^f = \sum_{r=1}^{M+1} \sum_{i=0}^{M} (\lambda_{ri} / \lambda_i) t_{ri}(x)$$

(14)
corresponds to the utilization of the material-handling system due to empty travel, and

$$\rho_i = \sum_{i=0}^{M} \sum_{j=1}^{M+1} \lambda_{ij} t_{ij}(x)$$

is the utilization of the material-handling system due to full travel.

From the above expressions, we can see that the travel-time distribution is determined by the layout configuration and that this distribution is not necessarily exponential. As a result, the arrival process to the departments is not always Poisson distributed, even if external arrivals are Poisson and processing times are exponential. This means that our system cannot be treated, in general, as a network of M/M/1 queues. Unfortunately, exact analytical expressions of performance measures of interest, such as expected WIP, expected time in system, and time in queue, are difficult to obtain for queues with such as expected WIP, expected time in system, and time in queue, are difficult to obtain for queues with general interarrival and processing time distributions. Therefore, to estimate these measures of performance we resort to network decomposition and approximation techniques, where each department, as well as the material-handling system, is treated as being stochastically independent, with the arrival process to and the departure process from each department and the material-handling system being approximated by renewal processes. Furthermore, we assume that two parameters, mean and variance, of the job interarrival and processing time distributions are sufficient to estimate expected WIP at each department. The decomposition and approximation approach has been widely used to analyze queueing networks in a variety of contexts (Bitran and Dasu 1992, Bitran and Tirupati 1989, Buzacott and Shanthikumar 1993, Whitt 1983a). A number of good approximations have been proposed by several authors (see Bitran and Dasu 1992 for a recent review). In this paper, the approximations we use have been first proposed by Kraemer and Langenbach-Belz (1976) and later refined by Whitt (1983a, 1983b) and shown to perform well over a wide range of parameters (Buzacott and Shanthikumar 1993, Whitt 1983b). The approximations coincide with the exact analytical results obtained by Fu and Kaku for the special case of Poisson arrival and exponential processing/travel times. Because in layout design our objective is primarily to obtain a ranked ordering of different layout alternatives, approximations are sufficient as long as they guarantee accuracy in the ordering of these alternatives. Approximations are also adequate when we are primarily interested, as we are in this paper, in the qualitative behavior of the performance measures. Comparisons of our analytical results with results obtained using simulation are discussed in §4.

Under a given layout, expected WIP at each department i ($i = 0, 1, \ldots, M + 1$) is approximated as follows:

$$E(WIP_i) = \frac{\rho_i^2 (C_i^2 + C_i^2) g_i}{2(1 - \rho_i)} + \rho_i,$$

where $\rho_i = \lambda_i \mu_i$ is the utilization of department i, and C_i^2 and C_i^2 are, respectively, the squared coefficients of variation of job interarrival and processing times, and

$$g_i \equiv g_i(C_i^2, C_i^2, \rho_i) \begin{cases} \exp \left[\frac{-2(1 - \rho_i)(1 - C_i^2)}{3\rho_i(1 + C_i^2 + C_i^2)} \right] & \text{if } C_i^2 < 1, \\ 1 & \text{if } C_i^2 \geq 1. \end{cases}$$

Similarly, expected WIP at the material-handling system is approximated by:

$$E(WIP) = \frac{\rho^2 (C_s^2 + C_s^2) g_s}{2(1 - \rho)} + \rho,$$

Note that ρ_i and ρ must be less than one for expected work-in-process to be finite. The squared coefficients of variation can be approximated as follows (Buzacott and Shanthikumar 1993, Whitt 1983a):

$$C_s^2 = \sum_{j \neq i} \lambda_{ij} \hat{p}_{ij} C_{j_s}^2 + (1 - p_{ij})$$

$$\quad + \frac{\lambda_i \gamma_i}{\lambda_s} (\gamma_s C_{s_0}^2 + (1 - \gamma_s)), \quad \text{and } C_s^2 = \rho^2 (C_s^2 + (1 - \rho^2)C_s^2),$$

where C_s^2 is the squared coefficient of interdeparture time from department i, \hat{p}_{ij} is the routing probability from node i to node j (nodes include departments and the material handling device), γ_i is the fraction of external arrivals that enter the network.
through node i, and $1/\lambda_0$ and C^2_{0i} are, respectively, the mean and squared coefficient of variation of the external job interarrival times. In our case, $\gamma_i = 1$ and $\gamma_i = 0$ for all others since all jobs enter the cell at the loading department. The routing probability from departments $i = 0$ through M to the material-handling system is always one, that from the material-handling system to departments $j = 1$ through $M+1$ is

$$\hat{p}_{ij} = \frac{\sum_{l=0}^{M+1} \lambda_{ij}}{\sum_{i=0}^{M} \sum_{j=0}^{M+1} \lambda_{ij}},$$ \hspace{1cm} (21)

and to the loading department ($j = 0$) is zero. Parts exit the cell from department $M+1$ (unloading department) so that all the routing probabilities from that department are zero. Substituting these probabilities in the above expression, we obtain:

$$C^2_{0i} = \sum_{i=1}^{N} \left(D_i / \sum_{i=1}^{N} D_i \right) C^2_i,$$ \hspace{1cm} (22)

$$C^2_i = \sum_{j=0}^{M} (\lambda_i / \lambda_j) C^2_{0j} = \sum_{j=0}^{M} \pi_j C^2_{0j}, \hspace{1cm} \text{and} \hspace{1cm} (23)$$

$$C^2_{li} = \pi_i C^2_{0i} + \pi_i \hspace{1cm} \text{for} \hspace{0.5cm} i = 1, 2, \ldots, M + 1,$$ \hspace{1cm} (24)

where $\pi_i = \lambda_i / \lambda_j$. Equalities (22)–(24), along with (20), can be simultaneously solved to yield:

$$C^2_{li} = \pi_i (\beta_i^2 C^2_{0i} + (1 - \beta_i^2) C^2_i) + 1 - \pi_i,$$ \hspace{1cm} (25)

for $i = 1, 2, \ldots, M + 1$, and

$$C^2_{li} = \left(\sum_{j=0}^{M} \pi_j \beta_i^2 C^2_{0j} + \sum_{j=0}^{M} \pi_j (1 - \beta_j^2) (1 - \pi_i) \right)$$

$$+ \sum_{j=0}^{M} \pi_j^2 (1 - \beta_j^2) \pi_i C^2_{0j} + \pi_i (1 - \beta_i^2) C^2_{0i} \right)$$

$$\left/ \left(1 - \sum_{j=0}^{M} \pi_j^2 (1 - \rho_j^2) (1 - \beta_j^2) \right) \right..$$ \hspace{1cm} (26)

From the expression of expected WIP, we can obtain additional measures of performance. For example, by virtue of Little’s law, expected flow time through department i ($i = 0$), is simply $E(F_i) = E(WIP_i) / \lambda_i$ and expected total flow time in system is $E(F) = E(WIP)/(D_1 + \cdots + D_M)$, where

$$E(WIP) = \sum_{i=0}^{M+1} E(WIP_i)$$

is total expected WIP in the system. We can also obtain expected flow time in the system for a specific product j as:

$$E(F^{(j)}) = \sum_{i=0}^{M+1} x_{ij} E(F_i),$$

where x_{ij} is the number of times product j visits department i.

Any of the above performance measures could be used as a criterion in layout design. In the remainder of this article, we limit ourselves to expected total WIP. However, the analysis can be extended to other measures. The layout design problem can be formulated as:

Minimize $E(WIP) = \sum_{i=0}^{M+1} E(WIP_i) + E(WIP_j)$ \hspace{1cm} (27)

subject to:

$$\sum_{k=1}^{K} x_{ik} = 1 \hspace{0.5cm} i = 0, 2, \ldots, M + 1,$$ \hspace{1cm} (28)

$$\sum_{i=0}^{M+1} x_{ik} = 1 \hspace{0.5cm} k = 1, 2, \ldots, K,$$ \hspace{1cm} (29)

$$\rho_i \leq 1,$$ \hspace{1cm} (30)

$$x_{ik} = 0, 1 \hspace{0.5cm} i = 0, 2, \ldots, M + 1; \hspace{1cm} k = 1, 2, \ldots, K.$$ \hspace{1cm} (31)

The above formulation shares the same constraints, Constraints (28), (29), and (31), as the QAP formulation. Constraints (28) and (29) ensure, respectively, that each department is assigned to one location and each location is assigned to one department. We require an additional constraint, Constraint (30), to ensure that a selected layout is feasible and will not result in infinite work-in-process. As in the QAP formulation, we assume $K = M + 2$. The case where $K > M + 2$ can be handled by introducing dummy departments with zero input and output flows. The objective function is, however, different from that of the QAP. In the conventional QAP, the objective function is a positive linear transformation of the expected full travel time and is of the form:

Minimize $z = \sum_{i} \sum_{j} \sum_{k} \sum_{l} x_{ij} x_{kl} \lambda_i \lambda_j d_{kl}.$ \hspace{1cm} (32)
Therefore, a solution that minimizes average full travel time between departments is optimal. Because expected WIP is not, in general, a linear function of average full travel time, the solutions obtained by the two formulations, as we show in the next section, can be different. However, a special case where the two formulations lead to the same solution is the one considered by Fu and Kaku, where all interarrival, processing, and transportation times are assumed to be exponentially distributed and empty travel time is negligible. In this case, we have \(C^2_s = C^2_r = 1 \), for \(i = 0, 1, \ldots, M+1 \), which when substituted in the expression of expected WIP, while ignoring empty travel, leads to:

\[
E(\text{WIP}) = \sum_{i=0}^{M+1} \frac{\rho_i}{1-\rho_i} + \frac{\rho_i}{1-\rho_i},
\]

with

\[
\rho_i = \sum_{i} \sum_{j} \sum_{k} \lambda_{ij} x_{ik} d_{ik}/\nu.
\]

Since only \(E(\text{WIP}) \) is a function of the layout (given the exponential assumption, the arrival process to the departments is always Poisson regardless of the layout configuration), and since \(E(\text{WIP}) \) is strictly increasing in \(\rho_i \), any solution that minimizes \(\rho_i \) also minimizes the overall WIP. Noting that \(\rho_i \) is minimized by minimizing \(z = \sum_{i} \sum_{j} \sum_{k} \lambda_{ij} x_{ik} d_{ik}/\nu \), we can see that minimizing \(z \) also minimizes expected WIP. In the next section, we show that when we either (1) account for empty travel or (2) relax the exponential assumption regarding interarrival, processing, or travel times (as we do in our model), the equivalence between the QAP and the queueing-based model does not hold any longer.

The quadratic assignment problem has been shown to be NP-hard (Pardalos and Wolkowicz 1994). Since the objective function in (27) is a nonlinear transformation of that of the QAP, the formulation in (27)-(31) also leads to an NP-hard problem. Although for relatively small problems implicit enumeration (e.g., branch and bound) can be used to solve the problem to optimality (Pardalos and Wolkowicz 1994), for most problems we must resort to a heuristic solution approach. Several heuristics have been proposed for solving the QAP (see Pardalos and Wolkowicz 1994 for a recent review) and any of these could be used to solve our model as well. In a software implementation of the formulation in (27)-(31), Yang and Benjaafar (2001) used both implicit enumeration and a modified 2-opt heuristic, similar to the one proposed by Fu and Kaku (1997a), to solve the problem. In this paper, we limit our discussion mostly to layouts where the QAP-optimal layout is easily identified.

3. Systems with Multiple Transporters

For a system with multiple transporters, the travel-time distribution is affected by the dispatching policy used to select a transporter whenever two or more are available to carry out the current material-handling request. Analysis of most dispatching policies is difficult. In this section, we treat the mathematically tractable case of randomly selecting a device when two or more are idle. Although not optimal, this policy does yield a balanced workload allocation among the different devices. Assuming transfer requests are processed on a first-come-first-served basis, this policy also ensures an assignment of transporters to departments proportional to the departments’ workloads. As in the single-transporter case, we assume that vehicles remain at the location of their last delivery if there are no pending requests.

In order to characterize the probability distribution of travel time in a system with \(n_t \) transporters \((n_t > 1) \), we need to first obtain the probability \(p_{ij} \) of an empty trip from department \(r \) followed by a full trip from department \(i \) to \(j \). The probability of a full trip from \(i \) to \(j \) is still given by (5). The probability of an empty trip from \(r \) can be written as follows:

\[
\text{Prob(Empty trip from } r) = \sum_{n_r=1}^{n_t} \sum_{n_s=1}^{n_t} \text{Prob}(\text{selecting transporter at } r \mid n_r, n_s) \times \text{Prob}(n_s),
\]

where \(\text{Prob(Selecting transporter at } r \mid n_r, n_s) \) refers to the probability of selecting one of the idle vehicles at department \(r \) given that there are \(n_r \) idle vehicles at
r and \(n_s \) total idle vehicles in the system, \(\text{Prob}(n_r | n_s) \) is the probability of having \(n_r \) idle vehicles at department \(r \) where \(n_r = 1, 2, \ldots, n_s \), given that there are \(n_s \) idle vehicles in the system, and \(\text{Prob}(n_r) \) is the probability of having \(n_r \) idle vehicles in the system, where \(n_s = 1, 2, \ldots, n_s \). It is straightforward to show that

\[
\text{Prob(\text{selecting transporter at } r | n_r \text{ and } n_s)} = n_r/n_s \quad \text{and} \quad \text{Prob}(n_r | n_s) = \left(\frac{n_s}{n_r}\right)p_r^{n_r}(1-p_r)^{n_s-n_r}, \tag{36}
\]

where \(p_r \) is the probability of an idle vehicle being at department \(r \) which is given by:

\[
p_r = \sum_{i=0}^{M} p_{ri} = \sum_{i=0}^{M} \sum_{j=1}^{M+1} \lambda_{ij}. \tag{38}
\]

We can now write the probability \(p_{rij} \) as

\[
p_{rij} = \left\{ \sum_{n_r=1}^{n_s} \sum_{n_t=1}^{n_s} \frac{n_s}{n_r} \left(\frac{n_t}{n_r}\right)^{p_r^{n_r}(1-p_r)^{n_s-n_r} \text{Prob}(n_s)} \right\} p_{ij} \tag{39}
\]
or equivalently as

\[
p_{rij} = \left\{ \sum_{n_r=1}^{n_s} (1/n_s) \text{Prob}(n_r) \sum_{n_t=1}^{n_s} \frac{n_s}{n_r} \left(\frac{n_t}{n_r}\right)^{p_r^{n_r}(1-p_r)^{n_s-n_r}} \right\} p_{ij}. \tag{40}
\]

Noting that

\[
\sum_{n_r=1}^{n_s} \frac{n_s}{n_r} p_r^{n_r}(1-p_r)^{n_s-n_r} = 1, \quad \text{and} \quad \sum_{n_s=1}^{n_s} \text{Prob}(n_s) = 1, \tag{41}
\]
yields to

\[
p_{rij} = \left\{ \sum_{n_s=1}^{n_s} \text{Prob}(n_s)p_r \right\} p_{ij} = p_r p_{ij}, \tag{42}
\]

which is the same as in the single-transporter case (a result due to the random nature of the selection rule).

One could also have argued directly that giving the probabilistic routing and the random selection rule for the material-handling system, the probability of an empty trip from \(r \) to \(i \) followed by a full trip from \(i \) to \(j \) would depend only on the workloads assigned to each department and not on the number of transporters.

The mean and variance of travel time can now be obtained as in (7) and (8). Expected WIP due to the transporters can be obtained using approximations for a GI/G/\(n_s \) queue. Similarly, the departure process from the transporters can be approximated as a departure process from a GI/G/\(n_s \) queue, which can then be used to characterize the arrival process to the departments and the transporters as in (25)–(26). A detailed analysis and software implementation of this approach can be found in Yang and Benjaafar (2001). In §5, we examine the effect of the number of transporters on layout performance.

4. Model Analysis and Insights

In this section, we show that layouts obtained using a WIP-based formulation can be very different from those using the QAP formulation. We trace these differences to two major factors: empty travel and travel-time variability.

4.1. The Effect of Empty Travel

In the following set of observations, we examine the impact of empty travel. We show that a layout that minimizes \(\rho_f \) does not necessarily minimize \(\rho_e \), and consequently, a layout that minimizes \(\rho_f \) does not necessarily minimize WIP. In fact, we show that a QAP-optimal layout (i.e., a layout that minimizes \(\rho_f \)) is not even guaranteed to be feasible. More generally, we show that two QAP-optimal layouts can result in different WIP values. Furthermore, under certain conditions we find that WIP is reduced more effectively by reducing empty travel, even if this increases full travel. This means that sometimes it can be desirable to place departments in neighboring locations even though there is no direct material flow between them. This also means that it can be beneficial to place departments with high intermaterial flows in distant locations from each other.

Observation 1. A layout that minimizes full travel does not necessarily minimize WIP.

The result follows from noting that reducing \(\rho_f \) can increase \(\rho_e \). If the increase in \(\rho_e \) is sufficiently large,
an increase in expected WIP can then follow. We illustrate this result using the following example. Consider a system consisting of 12 locations and 12 departments arranged in a 3×4 grid as shown in Figure 2(a). Departments are always visited by all products in the following sequence: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 8 \rightarrow 9 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11$. The distance matrix between locations
is shown in Figure 2(b)—we assume rectilinear distances with unit distance separating adjacent locations. Average processing times at departments are shown in Figure 2(c). We consider a system with a single material-handling device with speed of 1.65 (units of distance per unit of time) and overall demand rate of 0.027 (unit loads per unit time). Let us consider the two layouts shown in Figures 3(a) and 3(b), denoted respectively by x_1 and x_2 (the arrows are used to indicate the direction of material flow). It is easy to verify that layout x_1 is QAP-optimal and minimizes full travel. In contrast, layout x_2 is not QAP-optimal and, in fact, appears to be quite inefficient. Expected material-handling system WIP for layout x_1 and x_2, respectively, is
as well as the corresponding full and empty material-handling system utilizations, are shown in Figures 3(a) and 3(b). We can see that although layout x_2 does not minimize full travel, it results in significantly less empty travel, which is sufficient to cause an overall reduction in material-handling system utilization. As a consequence, expected WIP for layout x_2 is smaller than that of x_1. In fact, material-handling system WIP is reduced by nearly 80% (from 58.37 to 11.76) when layout x_2 is chosen over x_1!

This surprising result stems from the fact that the frequency with which a device makes empty trips to a particular department is proportional to the volume of outflow from that department. The likelihood of the material-handling device being in a particular department is similarly proportional to the volume of inflow to that department. Therefore, if two departments are highly loaded, the number of empty trips between them would be large even if no direct flow exists between these departments. In our example, Departments 2, 3, 9, and 8 have three times the workload of any other department in the factory. Therefore, the likelihood of an empty trip between any two of the four departments is three times higher than between any other two departments. In layout x_2, by placing these four departments in neighboring locations, empty travel is significantly reduced. Note that this is realized despite the fact that there is no direct material flow between the department pairs 2–3 and 8–9.

The above result also leads us to the following more general observation, which further highlights the fact that full travel is a poor indicator of WIP.

Observation 2. Expected WIP is affected by both ρ_f and ρ_e, which are not correlated and whose effect on expected WIP is not monotonic.

Observation 2 follows from the fact that an increase in $\rho_f(\rho_e)$ can result in either an increase or a decrease in $\rho_e(\rho_f)$. Depending on how $\rho_e(\rho_f)$ is affected, expected WIP may either increase or decrease. We illustrate this behavior by considering a series of layout configurations based on our previous example. The layouts, denoted x_1, x_2, x_3, are shown in Figure 3. The behavior of ρ_f, ρ_e, ρ_t, and $E(WIP)$ is graphically depicted in Figure 4. It is easy to see that ρ_f can behave quite differently from ρ_e and ρ_t. It is also easy to see that an increase or a decrease in ρ_f does not always have predictable consequences on expected WIP.

The fact that ρ_f can behave differently from ρ_e means that it is possible to have layouts with similar values of ρ_f but different values of ρ_e. This also means that layouts could have the same value of ρ_f but different values of expected WIP. In fact, it is possible to have two QAP-optimal layouts with very different WIP values. It is also possible for a layout to be QAP-optimal (i.e., it has the smallest value of ρ_f) and be WIP-infeasible.

Observation 3. Two QAP-optimal layouts can have different WIP values. Given a fixed material-handling capacity, a QAP-optimal layout can be WIP-infeasible for a system where there are one or more WIP-feasible layouts.

The first part of the result follows from noting that two layouts can have the same ρ_f but different values of ρ_e. For example, consider the two layouts, x_1 and x_7, shown in Figure 3. Both layouts are QAP-optimal. However, $E(WIP|x_1) = 58.37$ and $E(WIP|x_7) = 5.56$! The above result shows that QAP-optimality can be a poor indicator of WIP performance. The second part of the result is due to the fact that, even though ρ_f might be minimal, the corresponding ρ_e can be sufficiently large to make ρ_t greater than 1. We illustrate this result using the following example. Consider the same system description we used for the previous three observations except that material-handling system speed is 1.6 instead of 1.65. Now consider the performance of the layout configurations x_1 and x_3 shown in Figure 3. We have $E(WIP|x_3) = \infty$ while $E(WIP|x_1) = 10.5$. Thus, although layout x_1 is QAP-optimal, it is infeasible. Layout x_3 is not QAP-optimal but produces a relatively small WIP. Clearly, QAP-optimality does not guarantee feasibility. In systems where material-handling capacity is not a constraint, these results mean that a implementing a QAP-optimal layout would require a greater investment in material-handling capacity.

The previous three observations show that the QAP objective function can be a poor predictor of WIP. Therefore, there is a need to explicitly evaluate WIP if our objective is to design layouts that minimize it. In fact, regardless of the objective function, there is...
Figure 4 The Effect of Layout Configuration on Utilization and WIP

(a) The effect of layout configuration on WIP

(b) The effect of layout configuration on material handling utilization
always a need to at least evaluate both empty and full travel by the material-handling system since we must always generate feasible layouts. The fact that empty travel can be a significant portion of material-handling system utilization also means that we need to design layouts that minimize it. This may sometimes result in going counter to the common practice of favoring the placement of departments with large intermaterial flows in neighboring locations. As we saw in the previous examples, reducing WIP could lead to departments being placed in adjacent locations although there is no direct material flow between them (e.g., the department pairs 2–3 and 9–8). Because empty travel is more frequent from and to departments that are popular destinations (i.e., departments with high flow rates), placing these departments in neighboring locations can significantly reduce empty travel even when there is no direct flow between these departments. Therefore, the need to reduce full travel by placing departments with large intermaterial flows in neighboring locations must be balanced by the need to reduce empty travel by placing departments that are popular destinations in close proximity.

In short, there is a need to always account for both full and empty travel since together they affect the utilization of the material-handling system, which in turn affects WIP accumulation.

4.2. The Effect of Variability

Examining the expression of expected WIP, we can see that in addition to utilization of the material-handling system, WIP accumulation is determined by (1) the variability in the arrival process, (2) the variability in the processing/transportation times, and (3) the utilization of the departments. We can also see that because the material-handling system provides input to all the processing departments, variability in transportation time, as well as the material-handling system utilization, directly affect the variability in the arrival process to all the departments. In turn, this variability, along with the variability of the department processing times and the department utilizations, determine the input variability to the material-handling system. Because of this close coupling, the variability of any resource and its utilization affect the WIP at all other resources. This effect is not captured by the exponential model of Fu and Kaku and can lead to very different results with regard to layout WIP performance.

From the examples of the previous section, expected WIP, although not monotonic in full travel utilization, appears to be monotonic in overall material-handling system utilization. We show that this is not always true. In fact, we show that reducing average travel time (i.e., reducing \(\rho \)) can increase WIP. As a result, increasing the average distance between departments could, in fact, reduce WIP. Moreover, we show that the relative desirability of a layout can be highly sensitive to changes in material-handling capacity even when travel distances are the same. We also find that WIP accumulation at the material-handling system can be affected by non-material-handling factors, such as the utilization of the processing departments or variability in the department processing time, which means that the relative desirability of two layouts could be affected by these factors.

Observation 4. A smaller average travel time (full + empty) does not always lead to a smaller expected WIP.

The proof of Observation 4 follows by noting that the expression of expected WIP is a function of both \(\rho \) and \(C^2 \). Since \(C^2 \) is not necessarily decreasing in \(\rho \), a reduction in \(\rho \) may indeed cause an increase in \(C^2 \), which could be sufficient to either increase material-handling WIP or increase the arrival variability at the processing departments, which in turn could increase their WIP. We illustrate this behavior using the following example. Consider a facility with four departments (1, 2, 3, and 4). Products in the facility are always manufactured in the following sequence: 0 → 1 → 2 → 1 → 2 → 1 → 2 → 3. Other relevant data is as follows: \(D_i = 0.027 \); \(E(S_i) = E(S_i) = 30 \) and \(E(S_i) = E(S_i) = 10 \); \(C_i^2 = 1.0 \); \(C_i^2 = 0.5 \) for \(i = 0, 1, \ldots, 3, n_i = 1 \) and \(\nu = 0.68 \). We consider two layout scenarios, \(x_8 \) and \(x_4 \). The distances between departments are as follows, layout \(x_8 : d_{01}(x_8) = d_{02}(x_8) = d_{03}(x_8) = d_{12}(x_8) = d_{13}(x_8) = d_{23}(x_8) = 2 \); and layout 2: \(d_{01}(x_8) = 1, d_{02}(x_8) = 2, d_{03}(x_8) = 8, d_{12}(x_8) = 1, d_{13}(x_8) = 7, \) and \(d_{23}(x_8) = 6 \). The two layouts are graphically depicted in Figure 5. Since \(E(WIP(x_8)) = 15.87 < E(WIP(x_4)) = 19.26 \) although \(\rho_1(x_8) = 0.907 > \rho_1(x_4) = 0.896 \), our
result is proven. As indicated in Figure 5, the difference in WIP between the two layouts is mostly due to the higher value of C_2^2 in the case of x_8 ($C_2^2(x_8) = 0.735$ vs. $C_2^2(x_9) = 0.087$). In turn, this leads to higher values of C_{ai}^2 and C_{ai}^2 which further contribute to the larger WIP in layout x_9.

The above results show the important effect that variability in travel times can play in determining overall WIP. In each of the above examples, the smaller value of average travel time is associated with higher travel-time variability. This higher variability causes not only an increase in material-handling WIP, but also in department WIP (by increasing variability in the arrival process to the departments). These results point to the need for explicitly accounting for travel-time variance when selecting a layout. A layout that exhibits a small variance may, indeed, be more desirable than one with a smaller travel-time average. In practice, travel-time variance is often dictated by the material-handling system configuration. Therefore, special attention should be devoted to identifying configurations that minimize not only average travel time, but also its variance. For example, the star-layout configuration shown in Figure 6(a) has a significantly smaller variance than the loop layout of 5(b), which itself has a smaller variance than the linear layout of 5(c).

Although in the above examples the layout with the lower variance is more desirable, we should caution that this relative desirability can be sensitive to the available material-handling capacity. For example, from the stability condition ($\rho_t < 1$), we can see that the minimum feasible material-handling speed is higher for layout x_8 than for layout x_9. This means that for certain material-handling speeds layout x_8 is, indeed, infeasible while layout x_9 still results in finite WIP. More generally, as shown in Figure 7, the relative ranking of layouts can be affected by changes in material-handling capacity. For example, layout x_8 is superior to layout x_9 when material-handling speed is greater than 0.61, but it is clearly inferior for lower speeds. These results lead to the following important observation.

Observation 5. The relative ranking of layouts based on expected WIP can change with a change in material-handling capacity.

Observation 5 highlights the fact that material-handling capacity can have an unpredictable impact on layout desirability. It also points to the complex relationship between distribution of travel time, material-handling capacity, and WIP performance.

Travel distances and material-handling capacity are not, however, the only factors that affect the relative desirability of a layout. Non-material-handling factors such as department utilization levels, variability in department processing times, and variability in demand levels could determine whether one layout configuration is more desirable than another. For example, in the following observation we show that variability in processing times and demand can affect the relative ranking of a layout with regard to expected WIP.
Observation 6. The relative ranking of a layout based on expected WIP can be affected by non-material-handling factors.

Since the arrival variability to the processing departments and the material-handling system is affected by the utilization of the processing departments, the processing time variability, and the variability in product demands, it is possible that changes in these parameters could affect the relative desirability of a particular layout. We illustrate this behavior by considering layouts—the two layouts shown in Figure 8—with similar parameters to those in the previous observation (in this case, we let material-handling speed be 0.7). In Table 1, we show the effect of processing time and demand variability on the performance of the two layouts. As we can see, the same layout can be superior under one set of parameters and inferior under another.

Since the results of the observations are based on approximations for both average WIP and the arrival processes to the various departments, we used computer simulation to confirm them. For each of the example layouts, we constructed a stochastic simulation model using the discrete event simulation language Arena (Kelton et al. 1998). The simulated models are identical to the analytical ones, except...
that the travel time distribution is not prespecified. Instead, we provide the simulation model with the distances between departments, material-handling speed, and product routings. In contrast with the analytical approximations, the simulation model does away with the probabilistic routing assumption and captures dependencies between the length of consecutive trips that tend to occur in real systems (e.g., a long trip that takes the material-handling device to the outer edges of the layout tends to be followed by another long trip). For each case, we collected statistics on average WIP at the different processing departments and material-handling system. For each case, we also obtained a 95% confidence interval with a maximum half-width of 0.01. In addition to these

<table>
<thead>
<tr>
<th>Variability</th>
<th>$E(WIP(x_{10}))$</th>
<th>$E(WIP(x_{11}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^0_0 = 0.2, C^0_j = 0.2$</td>
<td>14.96</td>
<td>17.54</td>
</tr>
<tr>
<td>$C^0_0 = 0.5, C^0_j = 0.5$</td>
<td>19.96</td>
<td>21.66</td>
</tr>
<tr>
<td>$C^0_0 = 1.0, C^0_j = 1.0$</td>
<td>28.3</td>
<td>28.54</td>
</tr>
<tr>
<td>$C^0_0 = 1.2, C^0_j = 1.2$</td>
<td>31.63</td>
<td>31.29</td>
</tr>
<tr>
<td>$C^0_0 = 2.0, C^0_j = 2.0$</td>
<td>44.98</td>
<td>42.29</td>
</tr>
</tbody>
</table>
specific examples, we also simulated examples with randomly generated data sets and compared them to the approximation results. For brevity, the results are not included but are available from the author upon request.

Although specific values of the approximated average WIP are not always within the simulation 95% confidence interval, the simulated results confirm each of the observations (in each case, the relative ranking of the simulated layouts is consistent with the one obtained analytically; also, in each case, the differences between ranked layouts are found to be statistically significant). In general, we found the inaccuracy in estimating overall WIP to be mostly due to inaccuracies in estimating the variability in the arrival process to the departments and the material-handling system and variability in travel times. This is especially significant when both demand and processing time variability are small. In this case, variability is overestimated, which in turn results in higher estimates of WIP. This effect is due to the probabilistic approximation used in determining the origin of material-handling requests. This limitation can be addressed in part by extending the queuing network model to account for multiproduct deterministic job routings.

5. When Does Minimizing WIP Matter?

We have so far highlighted instances where the WIP formulation leads to a different layout from the one obtained using the QAP formulation. In this section, we examine factors that affect the degree to which the layouts obtained from the two formulations are different. In particular, we highlight conditions under which there is little difference in WIP between the two formulations or those under which the two formulations are actually WIP-equivalent. We consider six factors that we found through numerical experimentation to affect congestion the most. These include flow asymmetry, dimensional asymmetry, material-handling capacity, number of transporters, and variability in demand and processing time. To illustrate the effect of these factors, we carried out a full factorial design-of-experiments based on a system consisting of 16 departments, 16 locations and eight products. Routing sequences for each product are as follows: $P_1: 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$; $P_2: 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$; $P_3: 9 \rightarrow 10 \rightarrow 11 \rightarrow 12$; $P_4: 13 \rightarrow 14 \rightarrow 15 \rightarrow 16$; $P_5: 1 \rightarrow 5 \rightarrow 9 \rightarrow 13$; $P_6: 2 \rightarrow 6 \rightarrow 10 \rightarrow 14$; $P_7: 3 \rightarrow 7 \rightarrow 11 \rightarrow 15$; and $P_8: 4 \rightarrow 8 \rightarrow 12 \rightarrow 16$ (product flow is illustrated in Figure 9 for a QAP-optimal layout of a system with a 4×4 geometry). For each factor, we consider a set of values over a sufficiently wide range. Because of the nonlinear behavior of expected WIP in some factors, the number of levels considered varies per factor. However, for all factors, a minimum of three levels is evaluated. In total, we carried out over 2,000 experiments. For each experiment, we obtain both a QAP- and a WIP-optimized layout and the corresponding expected WIP values, which we denote respectively by $E(WIP|QAP)$ and $E(WIP|WIP)$. We use the ratio $\delta = E(WIP_j|QAP)/E(WIP_j|WIP)$ to measure the relative difference in material-handling WIP between the two layouts. The WIP due to the processing departments also varies. However, we found the effect of layout on this WIP, except for extreme cases, to be relatively small.
Table 2 Demand Scenarios for Example System

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1)</td>
<td>40</td>
<td>40</td>
<td>58</td>
<td>58</td>
<td>76</td>
<td>112</td>
<td>148</td>
<td>202</td>
<td>256</td>
<td>292</td>
</tr>
<tr>
<td>(D_2)</td>
<td>40</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_3)</td>
<td>40</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_4)</td>
<td>40</td>
<td>58</td>
<td>58</td>
<td>76</td>
<td>76</td>
<td>40</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_5)</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_6)</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_7)</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_8)</td>
<td>40</td>
<td>58</td>
<td>58</td>
<td>76</td>
<td>76</td>
<td>40</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

The following describes how the value of each factor is varied.

Flow Asymmetry. Flow asymmetry refers to the imbalance in flow rates among departments. In an asymmetric system, some departments are more visited than others, leading to more empty trips ending and originating at these departments. We consider 10 demand scenarios corresponding to 10 different flow asymmetry scenarios. The demand scenarios and the associated flow rates for each department are shown in Tables 2 and 3, respectively. We use the standard deviation in the department flow rates, \(\sigma_f \), to measure asymmetry under each scenario. To allow for a fair comparison between different scenarios, the capacity of a department is adjusted proportionally to its workload in order to maintain a constant utilization per department.

Dimensional Asymmetry. Dimensional asymmetry refers to asymmetry in the distances between different department locations (in a perfectly symmetric system, all department locations are equidistant from each other). We consider three levels of asymmetry corresponding to layouts with a \(4 \times 4 \), \(2 \times 8 \), and \(1 \times 16 \) geometry. Of the three geometries, the \(1 \times 16 \) is clearly the most asymmetric and the \(4 \times 4 \) is the least. In each case, we assume unit distance between adjacent locations and rectilinear travel between each pair of locations.

Table 3 Department Arrival Rates per Scenario for Example System

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1)</td>
<td>80</td>
<td>98</td>
<td>116</td>
<td>134</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>206</td>
<td>260</td>
<td>296</td>
</tr>
<tr>
<td>(\lambda_2)</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>116</td>
<td>152</td>
<td>206</td>
<td>260</td>
<td>296</td>
</tr>
<tr>
<td>(\lambda_3)</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>116</td>
<td>152</td>
<td>206</td>
<td>260</td>
<td>296</td>
</tr>
<tr>
<td>(\lambda_4)</td>
<td>80</td>
<td>98</td>
<td>116</td>
<td>134</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>206</td>
<td>260</td>
<td>296</td>
</tr>
<tr>
<td>(\lambda_5)</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>44</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_6)</td>
<td>80</td>
<td>62</td>
<td>44</td>
<td>26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_7)</td>
<td>80</td>
<td>62</td>
<td>44</td>
<td>26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_8)</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>44</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_9)</td>
<td>80</td>
<td>62</td>
<td>44</td>
<td>26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{10})</td>
<td>80</td>
<td>62</td>
<td>44</td>
<td>26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{11})</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>44</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{12})</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>44</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{13})</td>
<td>80</td>
<td>98</td>
<td>116</td>
<td>134</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>98</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{14})</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>116</td>
<td>152</td>
<td>98</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{15})</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>62</td>
<td>80</td>
<td>116</td>
<td>152</td>
<td>98</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_{16})</td>
<td>80</td>
<td>98</td>
<td>116</td>
<td>134</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>98</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>(\lambda_1)</td>
<td>1280</td>
</tr>
<tr>
<td>(\sigma_f)</td>
<td>0</td>
<td>19</td>
<td>26</td>
<td>42</td>
<td>53</td>
<td>59</td>
<td>74</td>
<td>84</td>
<td>108</td>
<td>129</td>
</tr>
</tbody>
</table>
Material-Handling Capacity. For a fixed number of transporters, material-handling capacity is determined by transporter speed. For each number of transporters, we consider six values of transporter speed that correspond to six different levels of transporter utilization (under a QAP-optimized layout) ranging from 0.6 to 0.99.

Number of Transporters. We consider systems with a number of transporters ranging from one to five. To allow for a fair comparison between systems with different numbers of transporters, we always maintain the same overall material-handling capacity by adjusting transporter speed proportionally to the number of transporters. This allows us also to distinguish between the effect of capacity and that of multiplicity of transporters.

Demand and Processing Time Variability. Six levels of demand variability are considered by varying the squared coefficients of variation of part external interarrival times from 0.33 to 2. Similarly, five levels of processing time variability are considered by varying the squared coefficients of variation of department processing times from 0.33 to 2.

In the following sections, we summarize key results by describing the effect of each factor on the ratio δ.

When appropriate, we also comment on interactions between different factors. For brevity, we show only a subset of the data we generated. The selected data are in all cases illustrative of the effects observed in the larger set.

5.1. The Effect of Flow Asymmetry

First, let us note that in a symmetric system where department flow rates are equal, empty travel is layout independent since there is equal likelihood of an empty trip originating at any department and ending at any other department. Consequently, the difference in expected WIP between a QAP-optimal and a WIP-optimal layout is always zero. However, a difference emerges, as we saw in previous sections, when some departments are visited more frequently than others. The effect of increasing flow asymmetry on this difference is illustrated in Figure 10.

From Figure 10, we see that while the WIP ratio δ is in the neighborhood of one when σ_f is relatively small, it can be significantly higher when σ_f is large. Surprisingly, the effect of σ_f is not monotonic. Although initial increases in σ_f do lead to a larger δ, additional increases invariably reduce its value. Thus, δ is maximum when σ_f is in the midrange and is significantly smaller in the extreme cases of either

![Figure 10: The Effect of Flow Asymmetry (4 x 4 Geometry; $n_i = 1$; $C_i = 1$ for $i = 1, \ldots, 8$; $\rho_i = 0.8$; $C_{ij} = 1$ for $j = 1, \ldots, 16$; the Series Corresponds to ρ_i Values of 0.9, 0.95, 98, and 0.989)'](image-url)
high or low asymmetry. A possible explanation for this nonmonotonic behavior is as follows. In a highly asymmetric system, the demand from one product dominates the demand from all others. Hence, the departments that are most visited are those that are visited by the product with the highest demand. Because these departments are already in neighboring locations under the QAP-optimal layout, the additional reduction in empty travel due to using the WIP criterion is limited. This is in contrast to situations where asymmetry is due to two or more products having relatively higher demands than the others. In that case, rearranging the layout so that the departments visited by these products are in neighboring locations does significantly reduce empty travel. The above results are summarized in the following observation.

Observation 7. The percentage difference in expected WIP between a QAP-optimal and a WIP-optimal layout is not monotonic in flow asymmetry. It is relatively small for either highly symmetric or asymmetric systems. However, it can be significant when flow asymmetry is in the midrange.

5.2. The Effect of Dimensional Asymmetry

In a perfectly dimension-symmetric system, all department locations are equidistant from each other. In this case, full and empty travel are always the same regardless of department placement. Hence, a QAP-optimal layout (or any other layout) is also WIP optimal. In other words, in a dimension-symmetric system a QAP-optimal and a WIP-optimal layout are WIP equivalent. Although it is difficult to predict in general the impact of an increase in dimensional asymmetry on the WIP ratio—this would largely depend on the specific geometry of the layout and the distribution of the flow among departments—large increases in asymmetry tend to increase the difference in WIP between a QAP-optimal layout and a WIP-optimal layout. This is supported by the results obtained for the three geometries we consider. A representative data set is shown in Figure 11.

From Figure 11, we see that the WIP ratio is largest for the most asymmetric system and smallest for the most symmetric one. The effect of dimensional asymmetry is sensitive to flow asymmetry. However, the effect of dimensional asymmetry is not always monotonic. Depending on the distribution of flow among departments, it is possible to see a reduction in the WIP ratio if an increase in dimensional asymmetry yields (unintentionally) a QAP solution where departments with the most flow are in neighboring locations. This tends to occur less frequently when both

Figure 11 The Effect of Layout Geometry ($n_i = 1; c_i = 1$ for $i = 1, \ldots, 8; p_i = 0.8; c_j = 1$ for $j = 1, \ldots, 16$)
5.3. The Effect of Material-Handling Capacity

The effect of increasing transporter speed is illustrated in Figure 12. We see that while for small values of ν, the difference in WIP is significant, the two layouts are practically WIP-equivalent when ν is large. This result is observed to hold regardless of flow asymmetry or layout geometry. Noting that higher values of ν correspond to lower utilization of the material-handling system, these results are, however, not surprising. A WIP-optimal layout would generally result in a smaller fraction of utilization devoted to empty travel. This reduction in empty travel is of little consequence when there is excess material-handling capacity. However, it becomes crucial when material-handling capacity is tight. In fact, given that WIP grows exponentially in the utilization of the material-handling system, even small decreases in empty travel would have a dramatic impact on WIP accumulation when utilization is high (as utilization approaches 1, δ grows without bound).

Observation 9. The difference in WIP between a QAP-optimal and a WIP-optimal layout is generally increasing in the utilization of the material-handling system.

Although the above result is generally true, there are instances when an increase in utilization could affect the variability of travel times sufficiently to cause a decrease in the WIP ratio. This does not occur often because the effect of utilization tends to dominate the effect of variability, particularly when material-handling system utilization is high.

5.4. The Effect of the Number of Transporters

The effect of increasing the number of transporters while maintaining the same overall material-handling capacity is illustrated in Figure 13. As we can see, the ratio δ is decreasing in n_t with δ approaching one when n_t is large. This means that the percentage difference between the two layouts is less significant in a system with many slow transporters than one with few fast ones (recall that ν decreases with an increase in n_t). This may seem surprising since expected WIP in both layouts is actually increasing in n_t (a single fast transporter is superior in terms of WIP to multiple slower ones). The fact that δ is decreasing in n_t, dimensional and flow asymmetry are high. In these cases, the QAP formulation does not usually favor placing departments in neighboring locations unless they have direct flows between them.

Observation 8. The percentage difference in expected WIP between a QAP-optimal and a WIP-optimal layout is generally increasing in dimensional asymmetry. In a dimension-symmetric system, a QAP-optimal and a WIP-optimal layout are WIP equivalent.
appears to be due mostly to how a change in utilization affects WIP for different values of \(n_t \). For small values of \(n_t \), a drop in utilization (when it is initially high) can cause a greater decrease in WIP than the one seen when \(n_t \) is large. These results are in line with known queueing effects in multiserver systems—see, for example, Kleinrock (1976, pp. 279–285). We should note that although the ratio \(\delta \) approaches 1 when \(n_t \) is large, the difference in WIP can remain significant. In fact, in many cases we observed the difference remains relatively constant in \(n_t \).

5.5. The Effect of Demand and Processing Time Variability

Varying the variability in either demand or processing times affects transporter WIP by affecting \(C_s \). This effect can be gleaned from the expression of \(C_s \) in Equation (26). The value of \(C_s \) is linearly increasing in both \(C_i \) and \(C_{a_t} \) with the rate of increase an (increasing) function of \(\rho_t \). Hence, we should expect \(\delta \) to be increasing in both \(C_i \) and \(C_{a_t} \). This is supported by the numerical results, a sample of which is shown in Figure 14. Note that the effect of process variability is more pronounced than that of demand, since in our experiments process variability is increased uniformly for all the departments.

5.6. Managerial Implications

Table 4 provides a summary of our results and offers broad guidelines as to when using WIP as a design criterion is particularly valuable. The results suggest that a WIP-optimized layout is most beneficial when material-handling capacity is limited, dimensional asymmetry is high, there is asymmetry in the flows, the number of transporters is small, or variability in either demand or processing times is high. These results also point to strategies that managers and facility planners could pursue to increase the robustness of layouts with respect to WIP performance—i.e., investing in excess material-handling capacity, adopting layout geometries that reduce travel distance variance, and ensuring that the most visited processes are centrally located.

Furthermore, these results draw attention to the importance of indirect interactions that take place between different areas of a facility. These indirect effects have implications for the way we should organize areas of a facility that may otherwise appear independent. For example, consider a system consisting of multiple cells that do not share any products or processes but are serviced by the same material-handling system. Our results suggest that among these cells those that manufacture the products with
the highest demand should be placed in neighboring locations (although they do not share any flows). Our results also show that organizing these cells into parallel production lines, a common practice in many facilities, may lead to greater congestion and longer lead times. Instead, adopting a configuration that minimizes distance asymmetries (e.g., using a layout where cells are configured into a U-shape and are arranged along a common corridor where most travel would take place) would maintain the efficient transfer of material within cells while freeing up additional material-handling capacity to service the entire facility.

Many companies are beginning to realize the importance of these indirect effects and are increasingly designing layouts that minimize dimensional asymmetries and reduce empty travel. For example, GM built its new Cadillac plant in the form of a T to maximize supplier access to the factory floor and reduce the distance between loading docks and production stocking points (Green 2000). Volvo designed its Kalmar plant as a collection of hexagon-shaped modules where material flows in concentric lines within each module (Tompkins et al. 1996). Motorola is experimenting with layouts where shared processors are centrally located in functional departments and are equidistant from multiple dedicated cells within the plant. Variations of the spine layout, where departments are placed along the sides of a common corridor, have been successfully implemented in industries ranging from electronic manufacturing to automotive assembly (Smith et al. 2000, Tanchoco 1994, Tompkins et al. 1996). Layout configurations that minimize dimensional asymmetries and reduce empty travel are also found in nonmanufacturing applications. For example, both the spine and star layouts are common configurations in airport designs.

Table 4 When Is Using the WIP Criterion Valuable?

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow asymmetry</td>
<td>Less valuable</td>
<td>More valuable</td>
<td>Moderately valuable</td>
</tr>
<tr>
<td>Dimensional asymmetry</td>
<td>Less valuable</td>
<td>Moderately valuable</td>
<td>More valuable</td>
</tr>
<tr>
<td>Material-handling capacity</td>
<td>More valuable</td>
<td>Moderately valuable</td>
<td>Less valuable</td>
</tr>
<tr>
<td>Number of transporters</td>
<td>More valuable</td>
<td>Moderately valuable</td>
<td>Less valuable</td>
</tr>
<tr>
<td>Demand and process variability</td>
<td>Less valuable</td>
<td>Moderately valuable</td>
<td>More valuable</td>
</tr>
</tbody>
</table>
Spine and T-shaped layouts are also popular designs for freight and cross-docking terminals (Gue 1999).

6. Concluding Comments

In this paper, we showed that minimizing material-handling travel distances does not always reduce WIP. Therefore, the criterion used in the QAP formulation of the layout design problem cannot be used as a reliable predictor of WIP. Because the QAP formulation accounts only for full travel, an optimal solution to the QAP problem tends to favor placing departments that have large intermaterial flows in neighboring locations. In this paper, we showed that when we account for empty travel, this may not always be desirable. Indeed, it can be more beneficial if departments that have no direct material flow between them are placed in neighboring locations. In particular, we found that empty travel can be significantly reduced by placing the most frequently visited departments in neighboring locations regardless of the amount of flows between these departments. Because WIP is affected by both mean and variance of travel time, we found that reducing travel-time variance can be as important as reducing average travel time. Equally important, we found that the relative desirability of a layout can be affected by non-material-handling factors, such as department utilization levels, variability in department processing times, and variability in product demands. We also identified instances where the QAP-and WIP-based formulation are WIP equivalent. This includes systems with flow/dimensional symmetry or systems with low material-handling system utilization.

Several avenues for future research are possible. In this paper, the objective function was to minimize overall WIP in the system. In many applications, it is useful to differentiate between WIP at different departments and/or different stages of the production process. In fact, in most applications, the value of WIP tends to appreciate as more work is completed and more value is added to the product. Therefore, it is useful to assign different holding costs for WIP at different stages. This would lead to choosing layouts that reduce the most expensive WIP first (e.g., letting departments that participate in the last production steps be as centrally located as possible).

In addition to affecting WIP, the choice of layout determines production capacity. From the stability condition, \(\rho_t < 1 \), we can obtain the maximum feasible throughput rate:

\[
\lambda_{\text{max}}(x) = \frac{1}{\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{s} p_{ij} x_{ik} x_{jl} (d_{kl} + d_{ls}) / \nu}.
\]

Maximizing throughput by maximizing \(\lambda_{\text{max}} \) could be used as an alternative layout design criterion. In this case, layouts would be chosen so that the available material-handling capacity is maximized (i.e., \(\rho_t \) is minimized). The stability condition can also be used to determine the minimum required number of material-handling devices, \(n_{\text{min}} \), for a given material-handling workload, \(\lambda \):

\[
n_{\text{min}} = \lambda \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{s} p_{ij} x_{ik} x_{jl} (d_{kl} + d_{ls}) / \nu.
\]

Minimizing \(n_{\text{min}} \) can be used as yet another criterion in layout design. More generally, our modeling framework offers the possibility of integrating layout design with the design of the material-handling system. For example, we could simultaneously decide on material-handling capacity, such as number or speed of material-handling devices, and department placement, with the objective of minimizing both WIP holding cost and capital investment costs.

In certain applications, there may be a mix of material-handling technologies. For example, material transport between neighboring departments could be ensured by continuous conveyors, while material movement between more distant departments is carried out by a combination of forklift trucks and overhead cranes. In this case, material-handling capacity is clearly determined by the mix of technologies used. It would be useful to examine the relationship between layout and the deployment of different material-handling technology within the same facility.

In this paper, we assumed that travel-time variability is driven by differences in the distances between different departments. In some applications, there might be additional variability due to inherent variability in the travel distance associated with the same trip or in the speed of travel. Including either type of variability in computing Expressions (8) and (9) is relatively straightforward. The effect in both cases
would be an increase in C_n. When this type of variability is high, we should expect the WIP difference between the QAP-and the WIP-optimal layouts to increase.

Finally, in our analysis we have assumed that there is always sufficient capacity for queueing. There are manufacturing environments where this capacity is limited. Limits on queue sizes can lead to the occasional blocking and starvation of the processing departments and the material-handling system, which in turn can reduce system throughput. The analysis of systems with limited queue capacity is considerably more complex and is worthy of future research. Although it is not entirely clear how layouts would affect throughput in systems where there is blocking, it is reasonable to conjecture that layouts that reduce congestion by reducing empty and full travel (along with variability) would also reduce the probability of blocking.

Acknowledgments

The author would like to thank Wally Hopp, the associate editor, and two anonymous reviewers for many useful comments on an earlier version of the paper. The author is grateful to Te Yang for help in generating computer code for the analytical models and carrying out the simulation experiments. This research is supported by the National Science Foundation under grant No. DMII-9908437.

References

Green, J. 2000. Why workers are lining up for jobs at this GM plant. Business Week (October 2) (www.businessweek.com).

Yang, T., S. Benjaafar. 2001. FLQ: A software for facility layout with queueing. Technical report—0015, Division of Industrial Engineering, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.

Accepted by Wallace J. Hopp; received June 8, 1999. This paper was with the author 17 months for 3 revisions.

704 MANAGEMENT SCIENCE/Vol. 48, No. 5, May 2002