IE 5531: Engineering Optimization I
Lecture 11: Midterm review

Prof. John Gunnar Carlsson

October 13, 2010
Administrivia

- Practice midterm 1 posted, solutions + a few more problems added later today
- PS3 solutions posted Friday
- PS1, PS2 handed back today
- Midterm 1 will be on 10/18/10
 - Lectures 1-9 covered
 - Open book, open notes
Lecture 2

- Equivalent forms of LP:

\[
\begin{align*}
\text{minimize} & \quad c^T x \quad s.t. \quad (1) \\
& \quad Ax \leq b \\
\text{minimize} & \quad c^T x \quad s.t. \quad (2) \\
& \quad Ax \leq b \\
& \quad x \geq 0 \\
\text{maximize} & \quad c^T x \quad s.t. \quad (3) \\
& \quad Ax = b \\
& \quad Dx \geq g \\
& \quad x \leq 0
\end{align*}
\]
Lecture 2

- **Standard form LP:**

 \[
 \text{minimize } c^T x \quad \text{s.t.} \\
 Ax = b \\
 x \geq 0
 \]

- **Tricks to change form:**
 - If \(x \) is free (no sign constraint), set \(x := x^+ - x^- \), with \(x^+, x^- \geq 0 \)
 - If \(a^T x \leq b \), set \(a^T x + s = b \), with \(s \geq 0 \)
 - If \(x \leq 3 \), set \(x + s = 3 \), with \(s \geq 0 \)
 - If \(x \geq 3 \), set \(x := x - 3 \)
Typical LP problems

- The *diet problem*: determine the cheapest possible diet that supplies all necessary nutrients
- Production planning: manufacture goods to make as large a profit as possible, without exceeding limits on available resources
Solving LPs graphically

Draw *half-spaces* corresponding to the constraints:
Solving LPs graphically

Draw half-spaces corresponding to the constraints:

\[x_1 + 2x_2 \leq 3 \]

Points:
- \((0, 1.5)\)
- \((3, 0)\)
Solving LPs graphically

Draw *half-spaces* corresponding to the constraints:

\[x_2 \]

(0,1.5) (1,1) (1.5,0)
Solving LPs graphically

Draw *half-spaces* corresponding to the constraints:
The graphical method

Draw level sets of the objective function (they’re lines orthogonal to c)
Facts about LP

- All LP problems fall into one of three classes:
 - Problem is *infeasible*: the feasible region is empty
 - Problem is *unbounded*: the feasible region is unbounded in the objective function direction
 - Problem is *feasible and bounded*:
 - There exists an *optimal solution* \(x^* \)
 - There may be a *unique* optimal solution or *multiple* optimal solutions
 - There is always at least one *corner* optimizer if the face has a corner
 - If a corner point is not worse than its neighboring corners, then it is optimal
Linearizing a problem

- Any piecewise-linear convex function can be minimized as an LP

\[
\begin{align*}
\text{minimize} \quad & z \\
\text{s.t.} \quad & z \geq c_i^T x + d_i \quad \forall i \in \{1, \ldots, m\} \\
& Ax \leq b
\end{align*}
\]

- Similarly, absolute values (and sums of absolute values) can be minimized

\[
\begin{align*}
\text{minimize} \quad & \sum_{i=1}^{n} c_i z_i \\
\text{s.t.} \quad & z_i \geq x_i \quad \forall i \in \{1, \ldots, n\} \\
& z_i \geq -x_i \quad \forall i \in \{1, \ldots, n\} \\
& Ax \leq b
\end{align*}
\]
The simplex method for a standard-form LP:

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{s.t.} \quad & Ax = b \\
& x \geq 0
\end{align*}
\]

Choose a set of \(m \) columns of \(A \), call it \(B \), and solve \(A_B x_B = b \), with \(x_N = 0 \)

- If \(x_B \geq 0 \), then the point \(x \) is a *corner point* or *basic feasible solution*
- We choose successively better basic sets \(B \) until we can’t make any more progress
Simplex tableau

\[B \quad r = c - A^T (A_B^{-1})^T c_B \quad -c_B^T A_B^{-1} b \]

<table>
<thead>
<tr>
<th>basis indices</th>
<th>(A_B^{-1} A)</th>
<th>(A_B^{-1} b)</th>
</tr>
</thead>
</table>

The upper right element measures the current value of the objective function
Simplex algorithm

Initialize the simplex algorithm with a feasible basic set B, so that $x_B \geq 0$. Let N be the remaining indices. Write the simplex tableau.

1. Test for termination. Find

$$r_e = \min_{j \in N} \{r_j\}$$

If $r_e \geq 0$, the solution is optimal. Otherwise, determine whether the column of \bar{A}_e contains a positive entry. If not, the objective function is unbounded below. Otherwise, let x_e be the entering basic variable.

2. Determine the outgoing variable. Use the MRT to determine the outgoing variable x_o.

3. Update the basic set. Update B and A_B and transform the problem to canonical form. Return to step 1.
Gauss-Jordan elimination

Given a simplex tableau, an outgoing variable x_o, and an entering variable x_e,

1. Divide all the entries in the row corresponding to x_o by element \bar{a}_{oe} (the “pivot element”), so that $\bar{a}_{oe} \mapsto 1$.

2. For all $i \neq o$, modify all other entries in the usual Gauss Jordan process:

 $$\bar{a}_{ij} \mapsto \bar{a}_{ij} - \frac{\bar{a}_{oj}}{\bar{a}_{oe}} \bar{a}_{ie}$$

3. Modify the right-hand side and the objective function row in the same way.

The above procedure allows us to find the optimal basic set without computing A_B^{-1} at every step.
Example

Consider the problem (not in standard form)

$$\begin{align*}
\text{minimize} \quad & -3x_1 - 4x_2 \\
s.t. \quad & x_1 + x_2 \leq 4 \\
& 2x_1 + x_2 \leq 5 \\
& x_1, x_2 \geq 0
\end{align*}$$

We re-write this in standard form:

$$\begin{align*}
\text{minimize} \quad & -3x_1 - 4x_2 \\
s.t. \quad & x_1 + x_2 + x_3 = 4 \\
& 2x_1 + x_2 + x_4 = 5 \\
& x_1, x_2, x_3, x_4 \geq 0
\end{align*}$$
Example

minimize \(-3x_1 - 4x_2\)

s.t. \(x_1 + x_2 + x_3 = 4\)
\(2x_1 + x_2 + x_4 = 5\)
\(x_1, x_2, x_3, x_4 \geq 0\)

- The first step is to choose a basic set \(B\), and then build \(\bar{A} = A_B^{-1}A\) and so forth in the tableau. What’s a good choice of \(B\)?
Example

\[
\begin{align*}
\text{minimize} & \quad -3x_1 - 4x_2 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 = 4 \\
& \quad 2x_1 + x_2 + x_4 = 5 \\
& \quad x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]

- The first step is to choose a basic set \(B \), and then build \(\bar{A} = A_B^{-1}A \) and so forth in the tableau. What’s a good choice of \(B \)?

- If we set \(B = \{3, 4\} \), then we find that \(A_B \) is just the identity matrix, so \(\bar{A} = A \)!

- If we are given a problem of the form \(\text{minimize } \mathbf{x} : A\mathbf{x} \leq \mathbf{b} \), where \(\mathbf{b} \geq \mathbf{0} \), this is always a good way to start
The canonical form shows us that this is not optimal. Pick \(x_1 \) as an entering basic variable. Using MRT, we see that \(\frac{4}{1} < \frac{5}{2} \), so \(x_4 \) will leave the basic set.

Next, we do Gauss-Jordan elimination:

1. Divide (III) by 2
2. Add 3\(\times \) (III) to (I)
3. Subtract (III) from (II)

Tableau

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>−3</th>
<th>−4</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>(III)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
The canonical form shows us that this is not optimal. Pick \(x_1 \) as an entering basic variable.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(I)	3	1	1	1	0	4
(II)	4	2	1	0	1	5
(III)						
The canonical form shows us that this is not optimal. Pick x_1 as an entering basic variable

Using MRT, we see that $4/1 < 5/2$, so x_4 will leave the basic set
Tableau

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>B</td>
<td>-3</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(II)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>(III)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

- The canonical form shows us that this is not optimal. Pick x_1 as an entering basic variable.
- Using MRT, we see that $4/1 < 5/2$, so x_4 will leave the basic set.
- Next, we do Gauss-Jordan elimination:
 1. Divide (III) by 2
 2. Add $3 \ast (III)$ to (I)
 3. Subtract (III) from (II)
The canonical form shows us that this is not optimal. Pick x_2 as an entering basic variable. Using MRT, we see that $rac{3}{2} < rac{5}{2}$, so x_3 will leave the basic set.

Next, we do Gauss-Jordan elimination:

Multiply (II) by 2.

Add $\frac{5}{2} \times (III)$ to (I).

Subtract $\frac{1}{2} \times (II)$ from (III).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>B</td>
<td>0</td>
<td>$-5/2$</td>
<td>0</td>
<td>$3/2$</td>
</tr>
<tr>
<td>(II)</td>
<td>3</td>
<td>0</td>
<td>$1/2$</td>
<td>1</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>(III)</td>
<td>1</td>
<td>1</td>
<td>$1/2$</td>
<td>0</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>
The canonical form shows us that this is not optimal. Pick x_2 as an entering basic variable.
The canonical form shows us that this is not optimal. Pick x_2 as an entering basic variable.

Using MRT, we see that $\frac{3}{2} \cdot 1/2 < \frac{5}{2} \cdot 1/2$, so x_3 will leave the basic set.

<table>
<thead>
<tr>
<th>(I)</th>
<th>B</th>
<th>0</th>
<th>$-5/2$</th>
<th>0</th>
<th>$3/2$</th>
<th>$15/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(II)</td>
<td>3</td>
<td>0</td>
<td>$1/2$</td>
<td>1</td>
<td>$-1/2$</td>
<td>$3/2$</td>
</tr>
<tr>
<td>(III)</td>
<td>1</td>
<td>1</td>
<td>$1/2$</td>
<td>0</td>
<td>$1/2$</td>
<td>$5/2$</td>
</tr>
</tbody>
</table>
The canonical form shows us that this is not optimal. Pick \(x_2 \) as an entering basic variable.

Using MRT, we see that \(\frac{3/2}{1/2} < \frac{5/2}{1/2} \), so \(x_3 \) will leave the basic set.

Next, we do Gauss-Jordan elimination:

1. Multiply (II) by 2
2. Add \((5/2) \times (III)\) to (I)
3. Subtract \((1/2) \times (II)\) from (III)
The canonical form shows us that this is not optimal. Pick \(x_4 \) as an entering basic variable. Using MRT, we see that \(x_1 \) will leave the basic set (since \(3 \div (-1) < 0 \)).

Next, we do Gauss-Jordan elimination:

1. Add \([III]\) to \([I]\)
2. Add \([III]\) to \([II]\)
The canonical form shows us that this is not optimal. Pick x_4 as an entering basic variable.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>-1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>(III)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The canonical form shows us that this is not optimal. Pick \(x_4 \) as an entering basic variable.

Using MRT, we see that \(x_1 \) will leave the basic set (since \(3 / (-1) < 0 \)).

<table>
<thead>
<tr>
<th></th>
<th>(B)</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>-1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>(III)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The canonical form shows us that this is not optimal. Pick x_4 as an entering basic variable.

Using MRT, we see that x_1 will leave the basic set (since $3/(-1) < 0$).

Next, we do Gauss-Jordan elimination:

1. Add (III) to (I)
2. Add (III) to (II)
The canonical form shows us that this is optimal, so we're done. The optimal basic set is $B = \{2, 4\}$ and that $x_2 = 4$ and $x_4 = 1$. The objective function value is 16.
The canonical form shows us that this is optimal, so we’re done.

The optimal basic set is $B = \{2, 4\}$ and that $x_2 = 4$ and $x_4 = 1$.

The objective function value is 16.
Lecture 6

- The *dual* of a standard-form LP

\[
\text{minimize } \mathbf{c}^T \mathbf{x} \quad \text{s.t.} \\
A \mathbf{x} = \mathbf{b} \\
\mathbf{x} \geq 0
\]

is

\[
\text{maximize } \mathbf{b}^T \mathbf{y} \quad \text{s.t.} \\
A^T \mathbf{y} \leq \mathbf{c}
\]

- The *weak duality theorem* says that \(\mathbf{c}^T \mathbf{x} \geq \mathbf{b}^T \mathbf{y} \) for all feasible \(\mathbf{x} \) and \(\mathbf{y} \)

- The *strong duality* says that if the primal and dual problem are both feasible, then \(\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^* \)

- These statements hold for problems not in standard form also
<table>
<thead>
<tr>
<th>Primal</th>
<th>(\text{minimize} \ c^T x)</th>
<th>(\text{maximize} \ b^T y)</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(A^T)</td>
<td></td>
</tr>
<tr>
<td>constraints</td>
<td>(\geq b_i)</td>
<td>(\geq 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq b_i)</td>
<td>(\leq 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= b_i)</td>
<td>(\text{free})</td>
<td></td>
</tr>
<tr>
<td>variables</td>
<td>(\geq 0)</td>
<td>(\leq c_j)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 0)</td>
<td>(\geq c_j)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{free})</td>
<td>(= c_j)</td>
<td></td>
</tr>
<tr>
<td>Dual</td>
<td>Finite optimum</td>
<td>Unbounded</td>
<td>Infeasible</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Finite optimum</td>
<td>Possible</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Unbounded</td>
<td>X</td>
<td>X</td>
<td>Possible</td>
</tr>
<tr>
<td>Infeasible</td>
<td>X</td>
<td>Possible</td>
<td>Possible</td>
</tr>
</tbody>
</table>
Duality examples

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation problem</td>
<td>Pricing for goods</td>
</tr>
<tr>
<td>Maximum flow</td>
<td>Min cut</td>
</tr>
<tr>
<td>Production planning</td>
<td>Minimum acquisition</td>
</tr>
</tbody>
</table>

Also: multi-firm alliance, existence of core payment vector
Theorem

Let \(x \) and \(y \) be feasible solutions to the primal and dual problem, respectively. The vectors \(x \) and \(y \) are optimal solutions for the two respective problems if and only if

\[
\begin{align*}
 x_i > 0 & \implies A_i^T y = c_i \\
 A_i^T y < c_i & \implies x_i = 0
\end{align*}
\]

in other words,

\[
x_i \left(A_i^T y - c_i \right) = 0 \quad \forall i
\]
Complementary slackness

- Complementarity holds for LPs that are not in standard form as well.
- Let a_j^T denote the jth row of A and let A_i denote the ith column of A.
- A primal-dual pair x, y is optimal if and only if:

\[
y_j \left(a_j^T x - b_j \right) = 0 \quad \forall j \in \{1, \ldots, m\}
\]

\[
\left(c_i - y^T A_i \right) x_i = 0 \quad \forall i \in \{1, \ldots, n\}
\]

where $A \in \mathbb{R}^{m \times n}$

- In other words: take each variable and its associated constraint; one of the two must be 0.
If we change element b_i of the RHS by an amount λ (i.e. $b_i \mapsto b_i + \lambda$), the current basic set B remains optimal so long as

$$x_B \geq -\lambda u$$

where u is the ith column of A_B^{-1}

If we change element c_j of the objective function by an amount λ, the current basic set remains optimal so long as

$$\begin{cases} r_N + \lambda \bar{e}_j \geq 0 & \text{if } j \in N \\ r_N - \lambda A_N^T (A_B^{-1})^T \bar{e}_j \geq 0 & \text{if } j \in B \end{cases}$$

where $\bar{e}_j = (e_j)_N$, $(e_j)_B$ respectively
Consider the linear program

\[
\text{maximize } x_1 + 2x_2 \\
\text{s.t. } x_1 \leq 1 \\
x_2 \leq 1 \\
x_1 + x_2 \leq 1.5 \\
x_1, x_2 \geq 0
\]
Example

The initial tableau is

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>-1</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The final tableau is

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td>1</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Example

- The optimal basis in the preceding example was \(\{1, 2, 3\} \) with \(x_B = (0.5, 1, 0.5) \); we therefore have

\[
A_B^{-1} = \begin{pmatrix}
0 & -1 & 1 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{pmatrix}; \quad A_N = \begin{pmatrix}
0 & 0 \\
1 & 0 \\
0 & 1
\end{pmatrix}; \quad r_N = \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]

- The initial objective coefficients were \((-1, -2, 0, 0, 0)\); we'll change the first element, \(c_1 = -1 \), to \(-1 + \lambda \)

- Since \(x_1 \) is a basic variable, we require that

\[
\begin{pmatrix}
1 \\
1
\end{pmatrix} - \lambda \begin{pmatrix}
1 \\
1
\end{pmatrix} \geq 0
\]

and therefore \(-1 \leq \lambda \leq 1\)