Chapter 2. Basic Theory of Interest
Interest rates:

- Simple interest;
- Compound interest;
- Nominal interest rate;
- Effective interest rate;
- Continuous time compounding.
Money: Note of value promised to be delivered at different points in time and quantity.

Cash Flow: A prescribed sequence of money/cash exchanges in time.

Financial Instruments: Bills, notes, bonds, futures, contracts, ...

Financial Securities: Well developed financial instruments for trading.

Fixed Income Securities: Securities that promise a fixed income to the holder over a span of time.

Financial Market: Market place where the financial securities are traded.
• Ideal Bank.
• Present value of a cash flow.
• How to evaluate a cash flow with a given interest rate?
• Equivalence between different cash flows.
Comparing two cash flows: *the method of comparing Net Present Value*.

Recall the example we considered before:

Suppose that your savings account gives you an annual interest rate 6%. You have got $100,000 in that account. A friend of yours needs some money urgently. He proposes to borrow your $100,000 now and pay back in the following scheme:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,000</td>
<td>$50,000</td>
<td>$60,000</td>
</tr>
</tbody>
</table>
This can be generalized to the evaluation of a cash flow:

<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 1</th>
<th>⋮</th>
<th>Year n</th>
<th>⋮</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-P$</td>
<td>C_1</td>
<td>⋮</td>
<td>C_n</td>
<td>⋮</td>
<td>C_N</td>
</tr>
</tbody>
</table>

Given the interest rate i, this boils down to computing

$$NPV := -P + \sum_{n=1}^{N} \frac{C_n}{(1 + i)^n}.$$

If it is positive then the project is preferred over i; o.w., it is not.
Interest rate formulas for

\((P/F, i\%, N), (A/P, i\%, N), (G/P, i\%, N), \ldots\)

Formula \((F/P, i\%, N)\) (Given \(P\) find \(F\)).

The interest for period \(n\) will be \(i(1 + i)^{n-1}, i = 1, \ldots, N\). So, at the end of year \(N\), the total amount of interests will be

\[
1 \times i \times \sum_{n=1}^{N} (1 + i)^{n-1} = (1 + i)^N - 1.
\]

Now, the principal amount, $1, has to be paid as well. So, the total equivalent amount is

\((1 + i)^N;\)

or,

\((F/P, i\%, N) = (1 + i)^N.\)

Shuzhong Zhang
Formula for \((P/F, i\%, N)\) (Given \(F\) find \(P\)).

It is reciprocal to \((F/P, i\%, N)\):

\[
(P/F, i\%, N) = \frac{1}{(F/P, i\%, N)} = (1 + i)^{-N}.
\]

Example: How much money you need to put in a bank with annual interest rate 8\% in order to save for $1 million in 30 years time?

\[
P = 1,000,000 \times (P/F, 8\%, 30) = $99,377.
\]
These two formulas involve only a single payment. Next we consider cash flows involving more than two payments.

We start with Uniform Series.

Formula for $(F/A, i\%, N)$ (Given annual payment A find F):

If one receives 1 each year, then this accumulates into

$$(F/P, i\%, N - 1) + \cdots + (F/P, i\%, 0)$$

$$= (1 + i)^{N-1} + \cdots + (1 + i)^1 + 1$$

$$= \frac{(1 + i)^N - 1}{i}.$$
Therefore,

\[(F/A, i\%, N) = \frac{(1 + i)^N - 1}{i}. \]

Example: If you deposit $10,000 in a bank account every year for 18 years at interest rate 8%. Then this amount becomes

\[F = 10,000 \times (F/A, 8\%, 18) = 374,502. \]
Formula for \((A/F, i\%, N)\) (Given \(F\) find \(A\)).

This is simply reciprocal to \((F/A, i\%, N)\), i.e.

\[
(A/F, i\%, N) = \frac{1}{(F/A, i\%, N)} = \frac{i}{(1 + i)^N - 1}.
\]

Example: How much do you need to invest every year in order to yield $1 million in 30 year?

\[
A = 1,000,000 \times (A/F, 8\%, 30) = $8,827.
\]
Formula for \((P/A, i\%, N)\) (Given \(A\) find \(P\)).

We can simply do it in two steps. First we compute \((F/A, i\%, N)\) and then multiple it with \((P/F, i\%, N)\), i.e.,

\[
(P/A, i\%, N) = (F/A, i\%, N) \times (P/F, i\%, N) \n= \frac{(1 + i)^N - 1}{i} \times (1 + i)^{-N} \n= \frac{(1 + i)^N - 1}{i(1 + i)^N} \cdot
\]

Example: You are running a bank. A customer agrees to pay you $100,000 each year with annual interest rate of 10% for 5 years. How much money will you lend to him?

\[
100,000 \times (P/A, 10\%, 5) = $379,080.
\]
Formula for \((A/P, i\%, N)\) (Given \(P\) find \(A\)).

It is again reciprocal to \((P/A, i\%, N)\):

\[
(A/P, i\%, N) = \frac{i(1 + i)^N}{(1 + i)^N - 1}.
\]

Example: You want to buy a house at the price of $400,000. You will do this with a mortgage from a bank at the annual interest rate 8% for 30 years. What is your annual payment?

\[
A = 400,000 \times (A/P, 8\%, 30) = 35,531
\]

($2,961 per month).
The annual payment will be less and less as N becomes larger. However, this amount will not go to zero in any way. In fact, if N is sufficiently large, then $A \approx Pi$.

Another interesting point is to understand how much in each annual payment is devoted to interest and how much to principal. It can be calculated that in year n, the interest payment is

$$I_n = Pi \frac{(1 + i)^N - (1 + i)^{n-1}}{(1 + i)^N - 1}$$

the payment for reducing the principal is

$$B_n = Pi \frac{(1 + i)^{n-1}}{(1 + i)^N - 1},$$

and the remaining principal is

$$P_n = P \frac{(1 + i)^N - (1 + i)^n}{(1 + i)^N - 1}.$$
More Interest Rate Formulas

The formulas discussed so far can be used to derive other formulas. For example, consider the present worth of deferred annuity:

$$(P/A, i\%, N - J)(P/F, i\%, J)$$

or,

$$(P/A, i\%, N) - (P/A, i\%, J).$$

Example: A father wants to decide how much he has to put in an account which gives 12% annual interest, in order to be able to withdraw $2,000 on his new born son’s 18th, 19th, 20th and 21th birthday?

It is

$$2,000 \times (P/A, 12\%, 4) \times (P/F, 12\%, 17) = 884.46.$$
Example: Suppose that you are 22 years old now. You start investing in a plan with interest rate 10% for 15 years with annual investment $1,000. Then you leave the money in the account until you retire at 65. What will the amount be?

At age 36, the accumulated amount is

\[1,000 \times (F/A, 10\%, 15) = $31,772.50 \]

At age 65 this amount becomes

\[1,000 \times (F/A, 10\%, 15) \times (F/P, 10\%, 29) = $504,010 \]
Suppose that you have a friend with the same age as you. She decides to delay the investment for 10 years. From age 32 onwards she will start investing $2,000 per year until the retirement at 65. How about her lump sum amount at age 65?
Well, it is

\[2,000 \times (F/A, 10\%, 65 - 32 + 1) = 490,953 \]

Moral: Better start saving early!
Uniform Gradient Series.

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flow</td>
<td>0</td>
<td>G</td>
<td>$2G$</td>
<td>...</td>
<td>$(N - 1)G$</td>
</tr>
</tbody>
</table>

Formula for $(F/G, i\%, N)$ (Given G find F).

We have

\[
(F/G, i\%, N)
= (F/A, i\%, N - 1) + (F/A, i\%, N - 2)
+ \cdots + (F/A, i\%, 1)
= \frac{(1+i)^{N-1} - 1}{i} + \frac{(1+i)^{N-2} - 1}{i} + \cdots + \frac{(1+i)^1 - 1}{i}
= \frac{1}{i} \sum_{n=0}^{N-1} (1+i)^n - \frac{N}{i} = \frac{1}{i^2} [(1+i)^N - 1] - \frac{N}{i}
\]
All other formulas for finding P and A can be derived using the formula above.

Formula for $(P/G, i\%, N)$ (Given G find P).

\[
(P/G, i\%, N) = (F/G, i\%, N)(P/F, i\%, N)
\]

\[
= \left\{ \frac{1}{i^2}[(1 + i)^N - 1] - \frac{N}{i} \right\} (1 + i)^{-N}
\]

\[
= \frac{1}{i} \left[\frac{1}{i} - (N + \frac{1}{i}) \frac{1}{(1 + i)^N} \right].
\]
Formula for \((A/G, i\%, N)\) (Given \(G\) find \(A\)).

\[
(A/G, i\%, N) = (F/G, i\%, N)(A/F, i\%, N)
\]

\[
= \left\{ \frac{1}{i^2} \left[(1 + i)^N - 1 \right] - \frac{N}{i} \right\} \frac{i}{(1 + i)^N - 1}
\]

\[
= \frac{1}{i} - \frac{N}{(1 + i)^N - 1}.
\]
Exercise: Suppose we have a project with the future cash flows as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flow</td>
<td>-8,000</td>
<td>-7,000</td>
<td>-6,000</td>
<td>-5,000</td>
</tr>
</tbody>
</table>

Suppose that the interest rate is 15%. What is the present expense of this project?

\[
P = -8,000(P/A, 15\%, 4) + 1,000(P/G, 15\%, 4)
\]
\[
= -8,000 \times 2.855 + 1,000 \times 3.79
\]
\[
= -19,050
\]
Geometric Gradient Series.

In year \(n + 1 \), the cash flow is

\[A_{n+1} = A_n(1 + g) \]

where \(g > 0 \) is a given factor.

The present worth of this cash flow is

\[
P = \sum_{n=1}^{N} A_n(1 + i)^{-n} = \sum_{n=1}^{N} A_1(1 + g)^{n-1}(1 + i)^{-n}
\]

\[
= \frac{A_1}{1 + g} \sum_{n=1}^{N} \left(\frac{1 + i}{1 + g} \right)^{-n}.
\]

Therefore the effect of this series is the same as: annuity \(\frac{A_1}{1+g} \) and interest rate \(\frac{1+i}{1+g} - 1 = \frac{i-g}{1+g} \); that is,

\[
\frac{A_1}{1 + g} (P/A, (\frac{i-g}{1+g})\%, N).
\]
Nominal and Effective Interest Rates.

If the compounding period is not a whole year, then it is customary to linearly extend it to an annual rate, known as nominal rate.

Example: money drawn quarterly with interest rate 3% has a nominal annual rate 12%.

The effective rate is: \((1 + 0.03)^4 - 1 \approx 12.55\% \) per annum.

In general, let \(r \) be the nominal rate, \(M \) be the compounding periods in a year. Then the effective annual rate is

\[
i = (1 + r/M)^M - 1.
\]

Exercise: Show that the continuous rate is an upper bound for the effective annual rate.
Effective versus Nominal Interest Rates

<table>
<thead>
<tr>
<th>N. of C.</th>
<th>6%</th>
<th>10%</th>
<th>15%</th>
<th>24%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.09%</td>
<td>10.25%</td>
<td>15.56%</td>
<td>25.44%</td>
</tr>
<tr>
<td>4</td>
<td>6.14%</td>
<td>10.38%</td>
<td>15.87%</td>
<td>26.25%</td>
</tr>
<tr>
<td>12</td>
<td>6.17%</td>
<td>10.47%</td>
<td>16.08%</td>
<td>26.82%</td>
</tr>
<tr>
<td>365</td>
<td>6.18%</td>
<td>10.52%</td>
<td>16.18%</td>
<td>27.11%</td>
</tr>
</tbody>
</table>
Internal rate of return

Given cash flow \((x_0, x_1, ..., x_n)\), the IRR is the interest rate \(r\) satisfying

\[
0 = x_0 + \frac{x_1}{1 + r} + \frac{x_2}{(1 + r)^2} + \cdots + \frac{x_n}{(1 + r)^n}.
\]

Theorem 1 If the cash flow is such that \(x_0 < 0\) and \(x_i \geq 0\) for \(i = 1, 2, ..., n\), and \(x_1 + x_2 + \cdots + x_n > -x_0\), then there is a unique IRR associated with the cash flow.
• Taxes;
• Inflation;
• Real dollar;
• Actual dollar;
• The correction formula

\[i_r = \frac{i - f}{1 + f}. \]