25% of CO2 Emissions from Fossil Fuels are from Production of Goods for Export (The US is still the world's biggest emitter of CO2, not China)

Mt CO2/y. Excludes non-CO2 GHGs.
How to Allocate Emissions between Co-Products?
Co-Product Example 1

Mexico

US

LIGHT FUEL OIL
ETHYLENE GASOLINE

Mexico

GASOLINE
Co-Product Example 2

China

EU

STEEL

STEEL SLAG

China
Co-Product Example 3

Turkey

EU

BORIC ACID

Turkey

BORIC OXIDE
How to Allocate Emissions between Co-Products?
Importer’s Profit

\[
\max_{q \geq 0, \ i \in \{V,M,S\}} \ (x - yq)q - (p_a + \theta)q - tq\gamma_i(l)
\]

Supplier’s Profit

\[
\max_{p_a \geq 0, \ e \in \{e_H,e_L\}} \ q^* (p_a + p_b - c(e)) - I(e)
\]
Allocation Schemes

- **Value (V)**
 \[\gamma_V(\ell) = e \frac{qp_a}{qp_a + qp_b} = e \frac{pa}{pa + pb} \]

- **Mass (M)**
 \[\gamma_M(\ell) = e \frac{q\beta_a}{\beta_a q + \beta_b q} = e \frac{\beta_a}{\beta_a + \beta_b} \]

- **Substitution (S)**
 \[\gamma_S(\ell) = e - e_b \]

Flexibility for importer to choose one of the above.

where \(\ell \doteq [e, e_b, p_a, p_b, \beta_a, \beta_b] \). Set \(\beta_a = \beta_b = 1 \) wlog.

Source: Scope 3 Accounting and Reporting Standards, WRI
Research Question

Effect of the *allocation scheme* on

- emissions
- importer’s and supplier’s profit
- trade quantity
- consumer surplus
- social welfare?
Proposition

Given flexibility, the importer selects the allocation scheme that maximizes

- emissions.
- supplier’s profit.
- consumer surplus.

Flexibility decreases welfare if and only if the social cost of emissions is above a threshold.
Supplier sets \(p_a \) and then Importer chooses \(\gamma_i, i \in \{V, M, S\} \)

Proposition

Giving the importer flexibility to choose an allocation scheme

- may decrease emissions
- may decrease the importer’s profit
- increases the supplier’s profit
Supplier sets p_α and then Importer chooses $\gamma_i, i \in \{V, M, S\}$

Example where flexibility reduced emissions and the profit of the importer.
Supplier sets p_a and then Importer chooses $\gamma_i, i \in \{V, M, S\}$

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the allocation is based on Mass or Substitution, emissions decrease with the tax rate t. (With discrete choice of e, emissions may increase with the tax rate t.)</td>
</tr>
<tr>
<td>If the allocation is based on Value, emissions may increase with the tax rate t.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intuition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Value-based allocation, as tax rate increases, supplier is motivated to reduce p_a in order to reduce the effective tax and sell more.</td>
</tr>
</tbody>
</table>
Supplier sets p_a and then Importer chooses $\gamma_i, i \in \{V, M, S\}$

Proposition

If the allocation is based on Mass or Substitution, emissions decrease with the tax rate t. (With discrete choice of e, emissions may increase with the tax rate t.)

If the allocation is based on Value, emissions may *increase* with the tax rate t.

Intuition:

Under Value-based allocation, as tax rate increases, supplier is motivated to reduce p_a in order to reduce the effective tax and sell more.
Supplier sets p_a and then Importer chooses $\gamma_i, i \in \{V, M, S\}$

\[p_a|_M - p_a|_V > t(\gamma_V (p_a|_V) - \gamma_M (p_a|_M)) \]
Supplier sets \(p_a \) and then Importer chooses \(\gamma_i, i \in \{V, M, S\} \)

Proposition

If the allocation is based on Mass or Substitution, emissions decrease with the tax rate \(t \).
(With discrete choice of \(e \), emissions may increase with the tax rate \(t \).)

If the allocation is based on Value, emissions may *increase* with the tax rate \(t \).

Intuition:

Under Value-based allocation, as tax rate increases, supplier is motivated to reduce \(p_a \) in order to reduce the effective tax and sell more.
Supplier sets p_a and then Importer chooses γ_i, $i \in \{V, M, S\}$

Lemma

Let the difference in total emissions be $D \doteq TE_V - TE_M$.

\[\frac{\partial D}{\partial x} < 0, \quad \frac{\partial D}{\partial c} < 0, \quad \frac{\partial D}{\partial p_b} > 0 \]

Remark

Increasing the importer’s market x and the supplier’s cost c decreases emissions under value-based allocation relative to mass-based allocation.

Increasing the supplier’s selling price for co-product B, i.e. p_b, increases emissions under value-based allocation relative to mass-based allocation.
Proposition

Suppose that the emissions allocation is value-based or flexible and that firms can write complete contracts. Then, the emissions tax is ineffective.

Corollary

Flexibility maximizes

- total emissions
- firms’ profits
- consumer surplus.

Flexibility decreases social welfare.

Intuition

The importer chooses value-based allocation. The optimal contract specifies a fixed transfer payment T to the supplier, the joint-profit-maximizing emissions intensity and quantity, and sets $p_a = 0$. Effective emission tax is zero.
Policy Implication

Value-based allocation should account for all payments and non-financial assistance that the importer provides to the supplier, not just the wholesale price per unit:

\[\gamma V = e \frac{\overline{p}_{a}}{\overline{p}_{a} + p_{b}} \]

where \(\overline{p}_{a} \equiv p_{a} + \frac{T}{q} \), total compensation per unit purchased.
Proposition

Suppose that Value-based allocation accounts for the ‘total compensation per unit purchased’.

If the supplier incurs no fixed cost of production, $F(e) = 0$, then flexibility maximizes emissions.

However, if $F(e) > 0$ then flexibility may reduce emissions.
Contracting to maximize joint profit

An example where flexibility reduced emissions.
Take-Aways

- Flexibility for the importer to choose an allocation scheme may *reduce*
 - emissions.
 - importer’s profit.
 - trade quantity.
 - consumer surplus.

- Flexibility increases the supplier’s profit.

- Under Value-based allocation, emissions may increase with the tax rate.

- With Value-based allocation as currently implemented, an emission tax is *ineffective*
 under complete contracts. (Firms will minimize p_a)
Supplier sets p_a and then Importer chooses γ_i, $i \in \{V, M, S\}$

Consider the case of allocation flexibility. Suppose $\gamma_M(\cdot) < \gamma_S(\cdot)$

Proposition

The importer prefers value-based allocation to mass-based allocation when

- her market is small
- her costs are high
- the supplier’s costs are low
- tax rate is high

Formally,

\[
\min(\gamma_V, \gamma_M) = \begin{cases}
\gamma_V = \frac{ep_a^*}{p_a^* + p_b} & \text{if } x - \theta + c < 3p_b + te \min \left\{ 1 - \frac{c}{4p_b}, \frac{1}{2} \right\} \\
\gamma_M = \frac{c}{2} & \text{if } x - \theta + c > 3p_b + te \max \left\{ 1 - \frac{c}{4p_b}, \frac{1}{2} \right\}
\end{cases}
\]
The importer prefers

- **Value** if and only if
 \[p_a < p_b \quad \text{and} \quad e > e_b \left(1 + \frac{p_a}{p_b} \right) \]

- **Mass** if and only if
 \[p_a \geq p_b \quad \text{and} \quad e > 2e_b \]

- **Substitution** if and only if
 \[e \leq e_b \min \left\{ 1 + \frac{p_a}{p_b}, 2 \right\} \]